Removal of polycyclic aromatic hydrocarbon (PAH)-contaminated sediments by persulfate oxidation and determination of degradation product cytotoxicity based on HepG2 and ZF4 cell lines.

  • PubMed
  • May 4, 2025
  • 0 Comments

Removal of polycyclic aromatic hydrocarbon (PAH)-contaminated sediments by persulfate oxidation and determination of degradation product cytotoxicity based on HepG2 and ZF4 cell lines.

Autor: Dong, Cheng-Di; Tsai, Mei-Ling; Wang, Tsing-Hai; Chang, Jih-Hsing; Chen, Chiu-Wen; Hung, Chang-Mao

Publication year: 2020

Environmental science and pollution research international

issn:1614-7499 0944-1344

doi: 10.1007/s11356-019-04421-w


Abstract:

This study evaluated the use of magnetite (Fe(3)O(4)), carbon black (CB), and Fe(3)O(4)-CB composites activated by persulfate (PS) at circumneutral pH to oxidize polycyclic aromatic hydrocarbons (PAHs) in marine sediments. In addition, the in vitro cytotoxic activity and apoptotic response of the obtained degradation products were investigated. Chemical analyses showed that the total PAH concentration was 26,263 ng/g for sediment samples from an industrial port area. Highly toxic BaP was the main contributor to the TEQ in sediments. Source analyses demonstrated that the PAHs in the sediment were derived from coal combustion. In this study, we found that the PS oxidation processes effectively degrade PAHs at concentration levels of 1.7 × 10(-5) M at pH 6.0. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay was employed to assess the cytotoxicity of the PAH degradation products before and after Fe(3)O(4)/PS, CB/PS, and Fe(3)O(4)-CB/PS oxidation treatment using a human hepatoma carcinoma cell line (HepG2) and a zebrafish (Danio rerio) embryonic cell line (ZF4). Each sample extract showed a marked dose-related response, with the cell viability reduced by 82% in the case of HepG2 and 58% in the case of ZF4 at 100 μg/mL after the Fe(3)O(4)-CB/PS process. The PAH degradation products had different effects on the cell morphologies of the two cell lines. The results suggested that the ZF4 cell model is more sensitive than HepG2 to the toxicity of the PAH samples.

Language: eng

Rights:

Pmid: 30746626

Tags: Humans; Oxidation-Reduction; MTT assay; Cell Line; Cytotoxicity; Water Pollutants, Chemical/*analysis; Carbon black; Geologic Sediments; HepG2 cells; Magnetite; Persulfate; Polycyclic aromatic hydrocarbons; Polycyclic Aromatic Hydrocarbons/*analysis; ZF4 cells

Link: https://pubmed.ncbi.nlm.nih.gov/30746626/

  • Related Posts

    New Insights into Vaccination Strategies Against Pseudomonas aeruginosa in Cystic Fibrosis Patients

    Pseudomonas aeruginosa, a resilient and opportunistic bacterial pathogen, remains one of the primary causes of chronic lung infections in individuals with cystic fibrosis (CF). CF is a genetic disorder that…

    Auranofin Reduces Oral Steroid Requirement in Steroid-Dependent Asthma Treatment

    Researchers have identified auranofin, a gold-based compound previously used in the treatment of rheumatoid arthritis, as a promising adjunct therapy for patients with steroid-dependent asthma. The findings suggest that auranofin…

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    You Missed

    West Johnston High and Triangle Math and Science Academy Compete in Brain Game Playoff

    • May 10, 2025
    West Johnston High and Triangle Math and Science Academy Compete in Brain Game Playoff

    New Study Reveals ‘Ice Piracy’ Phenomenon Accelerating Glacier Loss in West Antarctica

    • May 10, 2025
    New Study Reveals ‘Ice Piracy’ Phenomenon Accelerating Glacier Loss in West Antarctica

    New Study Suggests Certain Chemicals Disrupt Circadian Rhythm Like Caffeine

    • May 10, 2025
    New Study Suggests Certain Chemicals Disrupt Circadian Rhythm Like Caffeine

    Hospitalization Rates for Infants Under 8 Months Drop Significantly, Data Shows

    • May 10, 2025
    Hospitalization Rates for Infants Under 8 Months Drop Significantly, Data Shows

    Fleet Science Center Alters Anniversary Celebrations After Losing Grant Funding

    • May 10, 2025
    Fleet Science Center Alters Anniversary Celebrations After Losing Grant Funding

    How Microwaves Actually Work: A Scientific Breakdown

    • May 10, 2025
    How Microwaves Actually Work: A Scientific Breakdown